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SHORT COMMUNICATION 

A BRIEF NOTE ON UPWIND COLLOCATION 

D. E. DOUGHERTY* AND G. F. P I N D E R ~  

Department of Civil Engineering, Princeton University, Princeton, New Jersey 08544, U .S .A .  

SUMMARY 

Upwind collocation on  Hermite cubics is compared to  orthogonal collocation with respect to  effective 
diffusion. The one-dimensional constant coefficient advection-diffusion equation is employed to  this 
end. The effective diffusion coefficient is determined exactly and is found to be dependent on the nodal 
solution values. The effective diffusion coefficients of three other upwinding schemes are also pre- 
sented. Upwind collocation is found to  have an effective diffusion coefficient like other upwinding 
schemes plus an extra term which may enhance or  reduce the non-advective flux, depending on the 
problem solution and point location within the domain. 
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INTRODUCTION 

Upwinding schemes are commonly used in finite difference formulations for the numerical 
solution of hyperbolic and nearly-hyperbolic equations. In the past few years, upwinding 
schemes have been introduced into the methods of weighted residuals’-4 and orthogonal 
co l lo~at ion .~-~  Inherent in upwinding schemes is an increase in numerical dissipation. This is 
exhibited by a decrease in the amplification ratio when compared to the spatially centred 
schemes they replace. Gresho and Lee’ provide an incisive review and critique of the 
practice of upwinding. 

The upwind collocation method has recently received considerable attention. Shapiro and 
Pinder6 collocate asymmetric trial functions at Gauss-Legendre points whereas Allen and 
Pinder’ use Hermite cubics as trial functions and collocate upwind of the Gauss-Legendre 
points. Allen8 has provided an estimate of the increased dissipation of this scheme when 
applied to the model linear equation 

ac ac a2c 
at  ax ax2 
-+ u-- D- = 0 on a,,, 

The constants u and D are fluid velocity and diffusion coefficient, respectively, and a,,, is the 
domain of interest in x and t. 

The analysis by Allen was performed by determining a Galerkin finite element scheme 
equivalent to orthogonal collocation and then evaluating the error generated by inexact 
quadrature due to displacement of the Gauss points. He found that upwind collocation was 
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equivalent to orthogonal collocation with the D replaced by (Allen's equation (3.7)) 

(2) 
a E D + - u AX + O( Ax2) 
2 

where Ax is the element length and CY is the displacement of the collocation point on the 
local element scale [-I, 11. That is, if x, is the orthogonal collocation point and x: is the 
upwind collocation point, then a = 2(x:- x,)/Ax. DeBoor and Swartz" give error estimates 
for collocation on and off the Gauss-Legendre points which are O(Ax") and O(Ax2), 
respectively, for Hermite cubics. 

In this note the exact functional form of the effective diffusion coeffcient, E, will be found 
rather than the approximate equation (2). This coefficient E, when inserted in the centred-in- 
space scheme for 

ac ac a 2 C  

a t  ax ax2 
-+u---E-=O onax,, 

will yield the same results as upwinding solutions to equation (I). Such an equivalence is 
desirable because it may then be possible to immediately study the upwind scheme using the 
von Neumann analysis of the centred (orthogonal collocation) scheme, as can be done for 
upwind difference methods. 

UPWIND FINITE ELEMENT COLLOCATION ON HERMITE CUBICS 

In this approach one requires that 

1 N 

i = l  2 [~ a,, (2-D$)f i (x-xm)df l  +Qx, (u2) f i (x-x : )dR =0,  m = l , 2 ,  . . . ,  M (3) 

where N =  number of non-overlapping finite elements 
R,, = x-domain of element i, x E [xI1, x12] 

x l l ,  xZ2 = x-co-ordinates of left and right ends of element i 
tI(x, t) =approximating function for c(x, t )  on element i, given by 

2 

?Ax, t) = c Cc,(t)Ho,(x>+ c;(0ffl1(4I 
j = 1  

c, =estimate of c at node j of element i 
cj=estimate of W a x  at node j of element i 

H,,, = Hermite cubic of nth type associated with node j of element i 
x, = orthogonal collocation points 
x: = upwind collocation points = x, -a  Ax/2, a 2 0 for u 2 0 
rn =integers (1 ,2 , .  . . , M )  
M =  the required number such that the system of equations, incorporating initial and 

boundary values, is determined. 

Note that in equation (3) only the advection term is upwinded. The functional forms of the 
Hermite cubics are given in the Appendix. 

We consider henceforth one term of the summation (3) and collocation points x,,, and 
x:ER,.,. The expansion for ?I is substituted into (3) and, when the Hermites are written in 
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terms of the local coordinates 5 E [-1, 11, one obtains 

Here rn has the same meaning as in (3), trn and 5: correspond to x, and x: in local 
co-ordinates, and (5,) signifies ‘evaluated at 6 = tm.’ 

We now drop the subscript rn for the collocation points, i.e. t will henceforth be 
equivalent to &, of equation (4). Substituting the algebraic forms of the Hermites from 
equations (18)-(21) of the Appendix into (4) and noting that 5* = ,$-a, we have 

1 3 Ax 
8 

A X  Ax 
8 8 

+c;- (3t2+25-  1) +- ~ ~ 1 ( 2 a ~ - ~ r ~ ) - : c 2 ( 2 a t - - * )  

I ( 5 )  + C; - (6a5 - 2 c ~  - 3a2) + C; - (6a5 + 2 a  -3a’) 

The first group on the right hand side of equation ( 5 )  corresponds to orthogonal collocation 
of the advection term of equation (2), and the final group is the overall change in the 
equation due to upwinding. Rearranging this last group of (3, one obtains 

-2 [k:r(2a*-u’)-:c,(2at-a2)+c~ - A X  (6a5-2a-3a2)  

1 
Ax 8 

Ax 
8 

+ C ;  - ( 6 ~ 4  + 2a - 3a2) 

2u 2u 
Ax Ax 

- = -__ a[A]+- a2[B] 
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Substituting the result (6) into ( 5 )  and noting that the group [A]  appears multiplying 
4D/Ax2 in equation (5 ) ,  we determine that the effective diffusion for this scheme is 

a 
E = D + - u A x  

2 
(c,-cc,)+- Ax (C;+c;) 

3a’ 2 
u Ax -- 

2 65(c, - c2) + A X ( ~ <  - l )c  + Ax(35 + 1 ) ~ ;  (7) 

The result of Allen8 for the leading term in a, our equation (2), is therefore confirmed. 
The most interesting aspect of the result (7) is the last term (in a’), which shows that the 

effective diffusion depends on the nodal solution values ci and ci. As such, the von Neumann 
method of analysis can be applicable only for a linearized case. The non-linear term will be 
more closely examined later. 

OTHER UPWINDING METHODS 

To gain additional perspective on the effective diffusion coefficient determined above, we 
discuss briefly three other upwinding methods: finite differences, finite elements with 
asymmetric weighting, and Galerkin finite elements with inaccurate quadrature. Discussions 
of upwind finite differences pervade the literature; see for example pp. 502-505 of Refer- 
ence 11. The linear finite element Galerkin approximation to equation (1) can be upwinded 
by applying asymmetric weighting functions’.’’ to the advective term and using the symmet- 
ric trial functions to weight all other terms. Alternatively, the integrals of the advection term 
arising from a linear Bubnov-Galerkin scheme can be inexactly evaluated by moving the 
Gauss quadrature points away from the zeros of the associated Legendre polynomial, thus 
achieving the ~ p w i n d i n g . ~ . ’ ~  Artificial diffusion is introduced by each of these methods, 
leading to the expression for effective diffusion 

which is 

Upwind 
identical 

ff E = D + - u  AX 
2 

a widely known result. 

DISCUSSION 

finite difference methods and weighted residual methods (linear bases) lead to 
values of effective diffusion, E. The diffusion D is augmented in each case by 

a - U A X  
2 (9) 

resulting from upwinding alone. Effects of any other numerical techniques (e.g. time 
stepping) are not included. That all of these methods lead to identical effective diffusion 
coefficients should not come as a total surprise, since the upwind weighted residual schemes 
were motivated by the upwind difference scheme for this particular model equation, equation 

Upwind collocation on Hermite cubics generates a component of numerical diffusion 
identical to equation (9), plus an extra component. This new term, proportional to a2,  was 
shown by equation (7) to depend on  the solution, c, and c:. Let us re-examine the artificial 
diffusion due to this method. Multiplying the artificial component o f  the effective diffusion, 

(1). 
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E - D ,  of equation (7) by -4[A]lAx2, which appears in equation (6), and rearranging we 
have 

12  c I - c ~  c ; + c ~ A x  + (a”u) - Ax [- 2 +--I 2 2  (10) 

The first group of (10) is seen to be a diffusion-like group 

- (i u Ax -$) 6 (x - x, ) dQ 

Now look at the second group of equation (lo), which we rewrite 

The second diagonal (fourth order) Pad6 approximant is 

c , - ~ 2 + -  AX I(-) ac +(E) ]=% [(e) -(&) ]+O(Ax“) 
2 ax ax ax2 ax2 

Multiplying by 6a2ulAx we obtain 

But, recognizing that 

[ (&) - (””) ]/Ax = ?+ a3c O(Ax) 
ax2 ax2 ax 

we find that upwind collocation on Hermite cubics has thus added the terms 

a! a2c a” a3c 
2 ax 2 ax 

-- u AX--,+-  u AX”,+ O(Ax3) 

to the left side of equation (I), which confirms Allen’s order estimate, equation (2). Equation 
(16) shows that upwind collocation leads to both artificially diffusive and dispersive terms, as 
indicated by the second and third order derivatives in (16), respectively. It should be recalled 
that a is determined for each collocation point, so a slightly different equation is being 
solved by the orthogonal collocation method on Hermite cubics at each collocation point. 

CONCLUSIONS 

(1) The effective diffusion engendered in upwind collocation on Hermite cubics is 
dependent on the numerical solution of the model equation, i.e. it is non-linear. 

(2) The effects of upwind collocation on Hermite cubics, equation (16), can be decom- 
posed into the sum of two parts. The first part is identical to the numerical dispersion arising 
from other frequently used upwinding methods, equation (9). 

(3)  The remaining part of the numerical effects of upwind collocation on Hermite cubics is 
of order (a” Ax2) and is proportional to a’clax’. 
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(4) Both dissipation and dispersion will be generated by upwind collocation, as implied in 
equation (16). 
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APPENDIX: HERMITE CUBICS O N  x E [a, b ]  

The Hermite cubic is a simple osculation polynomial. When interpolating in one-dimension, 
the values of the function and its first derivative at two points separated by a distance Ax are 
required. The interpolate is written 

2 

c(x>=i3x)  = c r ~ l ~ * , ( x ) + ~ : H ; l ( x ) l  (17) 
1 = 1  

where x E [a, b], c, and c: are coefficients, and Hot and HI, are Hermite cubics of the zeroth 
and first kind. These cubics are given by 

H*,(x) = $ ( E -  1)“(5+2) =i(5”-35+2) (18) 
H,,(X) = -i([ + 1)2(6 - 2) = -$(p - 32- 2) (19) 

Ax 
112 =s (5” - 5* - 5+ 1) 

Ax Ax 
8 8 H12(X) = - (5 + 1)2(5 - 1) = - ( 5 3  + E2 - 5 - 1) 

with 
5=[2x-(a+b)]/Ax, i.e. (€[-I, 13 and A x z b - a .  
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